Lecture 16
Kin selection
Challenges to Natural selection:

Sexual Selection

Kin Selection
Types of social interactions
Types of social interactions

“Actor” → “Recipient”

Actor benefits Actor harmed
Types of social interactions

“Actor” → “Recipient”

Actor benefits Actor harmed

Recipient benefits

Recipient harmed
Types of social interactions

“Actor” → “Recipient”

Actor benefits
Recipient benefits Cooperative

Recipient harmed
Actor harmed
Types of social interactions

“Actor” → “Recipient”

Actor benefits

Recipient benefits
Cooperative

Recipient harmed
Altruistic

Recipient harmed
Types of social interactions

“Actor” → “Recipient”

<table>
<thead>
<tr>
<th>Actor benefits</th>
<th>Actor harmed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recipient benefits</td>
<td>Cooperative</td>
</tr>
<tr>
<td>Recipient harmed</td>
<td>Selfish</td>
</tr>
</tbody>
</table>
Types of social interactions

<table>
<thead>
<tr>
<th>Actor benefits</th>
<th>Actor harmed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recipient benefits</td>
<td>Recipient harmed</td>
</tr>
<tr>
<td>Cooperative</td>
<td>Altruistic</td>
</tr>
<tr>
<td>Selfish</td>
<td>Spiteful</td>
</tr>
</tbody>
</table>
The evolution of altruism
The evolution of altruism

- an altruistic act benefits a recipient at a cost to the actor
The evolution of altruism

• an altruistic act benefits a recipient at a cost to the actor

• how can altruistic behaviors evolve?
The evolution of altruism

• an altruistic act benefits a recipient at a cost to the actor

• how can altruistic behaviors evolve?

let $B =$ benefit to recipient
The evolution of altruism

• an altruistic act benefits a recipient at a cost to the actor

• how can altruistic behaviors evolve?

let $B =$ benefit to recipient

let $C =$ cost to actor
The evolution of altruism

• an altruistic act benefits a recipient at a cost to the actor

• how can altruistic behaviors evolve?

let \(B \) = benefit to recipient

let \(C \) = cost to actor

let \(r \) = coefficient of relatedness between actor and recipient
The evolution of altruism

- an altruistic act benefits a recipient at a cost to the actor
- how can altruistic behaviors evolve?

let $B =$ benefit to recipient

let $C =$ cost to actor

let $r =$ coefficient of relatedness between actor and recipient

An allele for an altruistic behavior will be favored if:

$$Br - C > 0$$
The evolution of altruism

• an altruistic act benefits a recipient at a cost to the actor

• how can altruistic behaviors evolve?

let $B =$ benefit to recipient

let $C =$ cost to actor

let $r =$ coefficient of relatedness between actor and recipient

An allele for an altruistic behavior will be favored if:

$$Br - C > 0$$

• this is called “Hamilton’s rule”
Bill Hamilton (1936 – 2000)
What is the coefficient of relatedness?
What is the coefficient of relatedness?

• \(r \) is the probability that homologous alleles present in different individuals are “identical by descent”.
What is the coefficient of relatedness?

• r is the probability that homologous alleles present in different individuals are “identical by descent”.

• the inbreeding coefficient, F, is the probability that two homologous alleles present in the same individual are identical by descent.
What is the coefficient of relatedness?

• r is the probability that homologous alleles present in different individuals are “identical by descent”.

• the inbreeding coefficient, F, is the probability that two homologous alleles present in the same individual are identical by descent.

• r can be estimated from:
What is the coefficient of relatedness?

• r is the probability that homologous alleles present in different individuals are “identical by descent”.

• the inbreeding coefficient, F, is the probability that two homologous alleles present in the same individual are identical by descent.

• r can be estimated from:

1. pedigrees
What is the coefficient of relatedness?

• r is the probability that homologous alleles present in different individuals are “identical by descent”.

• the inbreeding coefficient, F, is the probability that two homologous alleles present in the same individual are identical by descent.

• r can be estimated from:

 1. pedigrees

 2. genetic estimates of relatedness
Estimating r from pedigrees

Half-siblings

Actor \times

$\frac{1}{2}$

$\frac{1}{2}$

Recipient

$r = \frac{1}{4}$
Estimating r from pedigrees

Full-siblings

- **Mother**
- **Actor**
- **Father**
- **Recipient**

$r = 1/2$

Figure 12.1b Evolutionary Analysis, 4/e
© 2007 Pearson Prentice Hall, Inc.
Estimating r from pedigrees

Cousins

Actor’s parent Actor’s aunt or uncle

1/2 1/2

Actor Recipient

$r = 1/8$

Figure 12-1c Evolutionary Analysis, 4/e
© 2007 Pearson Prentice Hall, Inc.
A black-tailed prairie dog giving an alarm call
Alarm calls are given to warn kin

(b) Prairie dogs without kin in home coterie versus prairie dogs with kin in home coterie

Percentage of simulated badger attacks in which prairie dogs gave alarm calls

- Males
- Females

P = 0.019
P = 0.027

Figure 12-2bc Evolutionary Analysis, 4/e
© 2007 Pearson Prentice Hall, Inc.
Alarm calls are given to warn kin

Figure 12-3: Evolutionary Analysis, 4/e © 2007 Pearson Prentice Hall, Inc.
Helping at the nest in bee-eaters
Bee-eaters direct help to close relatives

(a)

(b)

Figure 12-6 Evolutionary Analysis, 4/e
© 2007 Pearson Prentice Hall, Inc.
Hamilton’s rule and the concept of inclusive fitness
Hamilton’s rule and the concept of inclusive fitness

• “inclusive fitness” is equivalent to an individual’s total fitness
Hamilton’s rule and the concept of inclusive fitness

• “inclusive fitness” is equivalent to an individual’s total fitness

Inclusive fitness
Hamilton’s rule and the concept of inclusive fitness

• “inclusive fitness” is equivalent to an individual’s total fitness

Inclusive fitness

“Direct” component

(i.e., individual’s own reproduction)
Hamilton’s rule and the concept of inclusive fitness

• “inclusive fitness” is equivalent to an individual’s total fitness

Inclusive fitness

"Direct" component
(i.e., individual’s own reproduction)

"Indirect" component
(i.e., act of individual that increases fitness of its relatives)
Hamilton’s rule and the concept of inclusive fitness

• “inclusive fitness” is equivalent to an individual’s total fitness

Inclusive fitness

“Direct” component
(i.e., individual’s own reproduction)

“Indirect” component
(i.e., act of individual that increases fitness of its relatives)

• kin selection is a form of natural selection that acts on this indirect component of fitness
The evolution of eusociality
The evolution of eusociality

• in eusocial species some individuals forego reproduction to aid in the rearing of others.
The evolution of eusociality

• in eusocial species some individuals forego reproduction to aid in the rearing of others.

• most common in the Hymenoptera (ants, bees, and wasps)
The evolution of eusociality

• in eusocial species some individuals forego reproduction to aid in the rearing of others.

• most common in the Hymenoptera (ants, bees, and wasps)

Three characteristics of eusociality:
The evolution of eusociality

• in eusocial species some individuals forego reproduction to aid in the rearing of others.

• most common in the Hymenoptera (ants, bees, and wasps)

Three characteristics of eusociality:

1. overlapping generations of parents and their offspring
The evolution of eusociality

• in eusocial species some individuals forego reproduction to aid in the rearing of others.

• most common in the Hymenoptera (ants, bees, and wasps)

Three characteristics of eusociality:

1. overlapping generations of parents and their offspring

2. cooperative brood care
The evolution of eusociality

• in eusocial species some individuals forego reproduction to aid in the rearing of others.

• most common in the Hymenoptera (ants, bees, and wasps)

Three characteristics of eusociality:

1. overlapping generations of parents and their offspring

2. cooperative brood care

3. specialized castes of non-reproductive workers.
Why should eusociality be so common in the Hymenoptera?
Why should eusociality be so common in the Hymenoptera?

• Hamilton suggested it was due to haplodiploidy:
Why should eusociality be so common in the Hymenoptera?

• Hamilton suggested is was due to haplodiploidy:
 • females develop from fertilized eggs (diploid)
 • males develop from unfertilized eggs (haploid)
Haplodiploidy skews relatedness

$\text{Mother} \quad \text{Father}
\quad \text{Actor} \quad \text{Recipient}$

$\frac{1}{2} \quad \frac{1}{2} \quad \frac{1}{2} \quad 1$

$r = \frac{3}{4}$!
<table>
<thead>
<tr>
<th>Comparison</th>
<th>Diploid</th>
<th>Haplodiploid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Degree of relatedness (r)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comparison</td>
<td>Diploid</td>
<td>Haplodiploid</td>
</tr>
<tr>
<td>---------------</td>
<td>---------</td>
<td>--------------</td>
</tr>
<tr>
<td>sister – sister</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{3}{4}$</td>
</tr>
<tr>
<td>Comparison</td>
<td>Diploid</td>
<td>Haplodiploid</td>
</tr>
<tr>
<td>---------------------</td>
<td>---------</td>
<td>--------------</td>
</tr>
<tr>
<td>sister – sister</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{3}{4}$</td>
</tr>
<tr>
<td>mother – daughter</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{2}$</td>
</tr>
<tr>
<td>Comparison</td>
<td>Diploid</td>
<td>Haplodiploid</td>
</tr>
<tr>
<td>--------------------</td>
<td>---------</td>
<td>--------------</td>
</tr>
<tr>
<td>sister – sister</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{3}{4}$</td>
</tr>
<tr>
<td>mother – daughter</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{2}$</td>
</tr>
<tr>
<td>sister – brother</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{4}$</td>
</tr>
<tr>
<td>Comparison</td>
<td>Diploid</td>
<td>Haplodiploid</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
<td>--------------</td>
</tr>
<tr>
<td>sister – sister</td>
<td>½</td>
<td>¾</td>
</tr>
<tr>
<td>mother – daughter</td>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td>sister – brother</td>
<td>½</td>
<td>¼</td>
</tr>
</tbody>
</table>

- the inclusive fitness of female workers is highest if they help produce more sisters!
Does haplodiploidy explain the evolution of eusociality?
Does haplodiploidy explain the evolution of eusociality?

NO!
Does haplodiploidy explain the evolution of eusociality?

NO!

1. Many eusocial species are not haplodiploid and not all haplodiploids are eusocial.
Does haplodiploidy explain the evolution of eusociality?

NO!

1. Many eusocial species are not haplodiploid and not all haplodiploids are eusocial.
Does haplodiploidy explain the evolution of eusociality?

NO!

1. Many eusocial species are not haplodiploid and not all haplodiploids are eusocial.

2. Many colonies in eusocial species are founded by more than one queen.
Does haplodiploidy explain the evolution of eusociality?

NO!

1. Many eusocial species are not haplodiploid and not all haplodiploids are eusocial.

2. Many colonies in eusocial species are founded by more than one queen.
 • workers in these colonies have $r = 0$.
Does haplodiploidy explain the evolution of eusociality?

NO!

1. Many eusocial species are not haplodiploid and not all haplodiploids are eusocial.

2. Many colonies in eusocial species are founded by more than one queen.
 • workers in these colonies have $r = 0$.

3. Many eusocial colonies have more than one father.
Does haplodiploidy explain the evolution of eusociality?

NO!

1. Many eusocial species are not haplodiploid and not all haplodiploids are eusocial.

2. Many colonies in eusocial species are founded by more than one queen.
 • workers in these colonies have \(r = 0 \).

3. Many eusocial colonies have more than one father.
 • the average \(r \) among workers is far below \(\frac{3}{4} \).
A phylogeny of the hymenoptera

Figure 12-13 Evolutionary Analysis, 4/e
© 2007 Pearson Prentice Hall, Inc.
A eusocial mammal – the naked mole-rat
Naked mole-rat queens maintain control by bullying

![Bar chart showing relatedness class vs. shoves/recipient/hour. The categories are Nonrelatives, Uncles/Aunts, Offspring, and Siblings. The chart indicates that Nonrelatives receive significantly more shoves than the other categories.](image)
The evolution of reciprocal altruism
The evolution of reciprocal altruism

Bob Trivers 1943 -
The evolution of reciprocal altruism

• this form of altruism may occur among unrelated individuals.
The evolution of reciprocal altruism

• this form of altruism may occur among unrelated individuals.

Trivers suggested that two conditions must be met:
The evolution of reciprocal altruism

• this form of altruism may occur among unrelated individuals.

Trivers suggested that two conditions must be met:

1. Cost must be \leq to the benefit received.
The evolution of reciprocal altruism

• this form of altruism may occur among unrelated individuals.

Trivers suggested that two conditions must be met:

1. Cost must be \leq to the benefit received.

• otherwise they will not be favored by selection
The evolution of reciprocal altruism

• this form of altruism may occur among unrelated individuals.

Trivers suggested that two conditions must be met:

1. Cost must be \leq to the benefit received.

• otherwise they will not be favored by selection

2. Individuals that fail to reciprocate must be punished.
The evolution of reciprocal altruism

- this form of altruism may occur among unrelated individuals.

Trivers suggested that two conditions must be met:

1. Cost must be \leq to the benefit received.
 - otherwise they will not be favored by selection

2. Individuals that fail to reciprocate must be punished.
 - otherwise cheaters can invade the population.
Trivers proposed that three factors might facilitate reciprocal altruism:
Trivers proposed that three factors might facilitate reciprocal altruism:

1. Groups are stable
Trivers proposed that three factors might facilitate reciprocal altruism:

1. Groups are stable

2. Opportunities for altruism are numerous
Trivers proposed that three factors might facilitate reciprocal altruism:

1. Groups are stable

2. Opportunities for altruism are numerous

3. Altruists interact in symmetrical situations
Blood-sharing in vampire bats
Blood-sharing in vampire bats

(a) All possible donors

(c) All possible donors

(b) Regurgitators

(d) Regurgitators

Number of individuals

Association

Relatedness

Figure 12-22 Evolutionary Analysis, 4/e
© 2007 Pearson Prentice Hall, Inc.