Biology 105: Introduction to Genetics
Midterm EXAM

Name ____________________________

Student ID _______________________

Before starting, write your name on the top of each page
Make sure you have all 10 pages

You can use the back-side of the pages for scratch, but we will not grade answers written on the back-side of the page.
Unsolved fractions are acceptable answers

Part I Definitions
20 points

Part II Short Answer
20 points

Part III True or False
15 points

Part IV Multiple Choice
25 points

Part V Extended Calculation
20 points

Total

Part 1
Definitions

Allele

Chromosome theory of inheritance

Map unit

Mendel's law of independent assortment

Barr body
Part 2
Short answers

1. Why is the recombination frequency between two genes far apart on the same chromosome never higher than 50%?

2. An X-linked dominant allele causes hypophosphatemia in humans. A man with hypophosphatemia marries a normal woman. What proportion of their sons will have the disease?

3. A farmer maintains two true-breeding lines of strawberries—sweet tasting strain and a bitter tasting strain. He crosses these two strains and in the F1 obtains plants that produce tangy tasting berries. He crosses the F1 to themselves in the hope of obtaining a true-breeding tangy tasting berry. In the F2 only half the plants are tangy tasting. The rest have either sweet or bitter tasting berries. Explain this pattern of inheritance.
Two genes T and S code for height and skin tone in vampires. (T=tall, t=short; S=smooth, s=wrinkled). A heterozygous TtSs individual mates with a homozygous ttss individual. They have progeny: 39 tall wrinkled; 40 short smooth; 9 tall smooth; 10 short wrinkled. Are the two genes linked or on separate chromosomes. If linked what is the distance between these two genes.

A species of deer bearing a single long chromosome is discovered. A rare triploid female is crossed to a rare triploid male. With respect to ploidy, describe the type and frequency of progeny expected from this mating. Include a punnet square in your answer.
Part 3
True/False
Indicate whether the following statements are true or false.

1. ________Mendel identified seven traits that assorted independently. The only explanation for this behavior is that the genes controlling these traits reside on different chromosomes.

2. ________A breeder identifies a dog with clumpy hair. Through multiple generations he crosses clumpy hair dogs with one another to establish a true-breeding line. However with each generation he obtains 25% short hair dogs, 50% clumpy hair dogs and 25% long hair dogs. He concludes that multiple genes control the clumpy hair trait.

3. ________Wild-type (red eye) Drosophila males are crossed to white eyed females. The eye color gene resides on the X-chromosome. One out of every 2000 female progeny flies is white eyed. These females are most likely the result of a rare chromosomal non-dysjunction during meiosis.

4. ________A true breeding double dominant strain of corn (AABB) is crossed to a true breeding double recessive strain (aabb). The F1 plants (AaBb) are then test crossed. If the A/a locus is linked to the B/b locus then we should expect more Ab and aB gametes compared to AB and ab gametes in the F1 plants.

5. ________In the pedigree below, the incidence of a common hereditary disease is indicated by darkened symbols. The best interpretation from the pedigree is that an autosomal recessive gene causes the disease.

```
Part 3
True/False
Indicate whether the following statements are true or false.

1. ________Mendel identified seven traits that assorted independently. The only explanation for this behavior is that the genes controlling these traits reside on different chromosomes.

2. ________A breeder identifies a dog with clumpy hair. Through multiple generations he crosses clumpy hair dogs with one another to establish a true-breeding line. However with each generation he obtains 25% short hair dogs, 50% clumpy hair dogs and 25% long hair dogs. He concludes that multiple genes control the clumpy hair trait.

3. ________Wild-type (red eye) Drosophila males are crossed to white eyed females. The eye color gene resides on the X-chromosome. One out of every 2000 female progeny flies is white eyed. These females are most likely the result of a rare chromosomal non-dysjunction during meiosis.

4. ________A true breeding double dominant strain of corn (AABB) is crossed to a true breeding double recessive strain (aabb). The F1 plants (AaBb) are then test crossed. If the A/a locus is linked to the B/b locus then we should expect more Ab and aB gametes compared to AB and ab gametes in the F1 plants.

5. ________In the pedigree below, the incidence of a common hereditary disease is indicated by darkened symbols. The best interpretation from the pedigree is that an autosomal recessive gene causes the disease.

```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```

```
```
Part4
Multiple choice

1. A human disease afflicted a family as shown in the accompanying pedigree.

The most likely mode of inheritance is
A X-linked dominant
B X-linked recessive
C Y-linked dominant
D Y-linked recessive
E autosomal dominant

2. Inversions result in
A the loss of chromosomal material
B the gain of chromosomal material
C rearrangements involving two different chromosomes
D rearrangements involving only a single chromosome
E none of the above

3. Drosophila homozygous for the mutation called delta have abnormally curved wings. Drosophila homozygous for the wild type allele of this gene have normal wings. The delta mutation behaves as a
A dominant
B co-dominant
C incomplete dominant
D more information needed
E lethal mutation
4. ________ In humans, XXY and XO individuals are
A. male and female respectively
B. female and male respectively
C. males only
D. females only
E. lethal

5. ________ Which of the following does not occur during meiosis I
A. recombination
B. replication of homologous chromosomes
C. separation of homologous chromosomes
D. pairing of homologous chromosomes
E. separation of sister chromatids

6. ________ How many types of gametes will an individual of the genotype AaBBCcDDEEFfGG produce
A. 2
B. 4
C. 8
D. 16
E. 32

7. ________ Three genes on the second chromosome of Drosophila are shown below

--------S------------------------P-------------------------------T--------
18 MU 20 MU

Given the map, in a cross between a SsTt x sstt fly, what percentage of recombinant progeny do you expect
A. slightly less than 38%
B. slightly greater than 38%
C. 38%
D. 50%
E. 0%

8. ________ Dosage compensation refers to a phenomenon in which
A. a set of autosomes becomes inactive in mammalian females
B. a set of autosomes becomes inactive in mammalian males
C. The Y chromosome becomes inactive in mammalian males
D. extra chromosome resulting from a non-dysjunction are expelled from the nucleus
E. An X chromosome becomes inactive in mammalian females
9. In a cross of BbDd x BbDd what proportion of the progeny will have the dominant B allele AND the dominant D allele

A. 1/4
B. 9/16
C. 3/16
D. 1/16
E. none of the above

10. The most common form of color-blindness in humans’ results from an X-linked recessive gene. A phenotypically normal couple has a normal daughter and a son who is colorblind. What is the probability that the daughter is heterozygous

A. 100%
B. 75%
C. 50%
D. 25%
E. 0%

11. An allele was identified in human populations that produces hairy ears. This trait is passed exclusively from father to son. On which chromosome is the gene most likely to reside

A. X
B. Y
C. autosome
D. either sex chromosome
E. polytene chromosome

12. The region of the chromosome to which the spindle attaches is known as the

A. chromatid
B. telomere
C. acromere
D. centromere
E. octamer
Part 5
Extended calculations
Problem 1)
Autosomal genes B and F are separated by a distance of 15 MU. Female Drosophila with one homolog bearing the B---f alleles and the other homolog bearing the b----F alleles are crossed to males doubly homozygous for the recessive alleles (b----f) of these genes.

A list the genotypes and frequency of gamete classes produced by the male

B list the genotypes and frequency of gamete classes produced by the female

C What proportion of the progeny from this cross will be Bbff

D What proportion of the progeny from this cross will be bbff

E what proportion of the progeny from this cross will be BBFF
Problem 2)
An individual heterozygous for three genes (AaBbCc) is test-crossed to an aabbcc individual and the progeny are classified by the gamete contribution from the heterozygous parent as follows

<table>
<thead>
<tr>
<th>Gamete Combination</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>A B c</td>
<td>299</td>
</tr>
<tr>
<td>a b C</td>
<td>282</td>
</tr>
<tr>
<td>a b c</td>
<td>158</td>
</tr>
<tr>
<td>A B C</td>
<td>142</td>
</tr>
<tr>
<td>a B c</td>
<td>48</td>
</tr>
<tr>
<td>A b C</td>
<td>51</td>
</tr>
<tr>
<td>A b c</td>
<td>8</td>
</tr>
<tr>
<td>a B C</td>
<td>10</td>
</tr>
</tbody>
</table>

A) Are the three genes linked? Show your reasoning

B) Which alleles are present on each of the parental chromosomes? Show your reasoning.

C) What is the order of these genes on the parental chromosomes? Show your reasoning

D) Indicate map distance between these three genes