Overview: This is a course in the fundamentals of Molecular Biology, from a chemical and structural point of view. It is intended to provide the basic set of tools for students planning on a research career. The fundamental principles are stressed, at the expense of myriad biological details. How things are (or have been) discovered and the practice of research are emphasized. Students are responsible for knowing and understanding everything presented in lecture; the text is used as a supporting source for the material. Students are expected to attend all lectures and one discussion section per week. There will be assignments that require you to look at molecular structures using molecular graphics software that you will run on a personal computer. The required work includes problem sets, two midterms and a final exam. The class website can be found at http://bio.classes.ucsc.edu/bmb100a/

The TAs are Hossein Amiri and Eric Maklan.

Text: Cox, Doudna and O'Donnell "Molecular Biology: Principles and Practice" (Freeman) Sections of the text corresponding to each section of the course are given below.

Course Outline

I. Introduction
 Careers in BMB
 Other courses in BMB area
 B vs. MB
 Structure-Function Paradigm
 Central Dogma
 The three primary kingdoms ("prokaryotes" vs. eukaryotes)
 Biology 115 (Eukaryotic Molecular Biology)
Plan of the Course
 TAs
 Sections
 Topics
 Prerequisites
 Review
 Reading; the Text vs. Lectures
II. Nucleotides: monomeric building blocks of DNA and RNA (polymers) *(Inside front cover; Sections 3.1 and 6.1)*

the bases
- structures
- aromaticity
- tautomeric forms
- pK's
- reactivities

ribose and deoxyribose
- stereochemistry *(Section 3.4)*
- constraints of ring structure

phosphate
- phosphoester linkages and geometry
- strong negative charge

the phosphate-sugar backbone

nomenclature
- bases
- nucleosides
- nucleotides
- oligonucleotides
- polynucleotides
- torsion angles

III. Weak Interactions *(Section 3.3)*

What makes macromolecules so special? Complexity and weak interactions.

Weak relative to what?
- Covalent bond energies
- Free energy and equilibrium constants
- Bond angles
- Free rotation vs. restricted rotation

Electrostatic (Ionic, Coulombic) interactions
- Dielectric constant

Hydrogen bonding
- Donors and Acceptors
- Non-donors and non-acceptors
Bond angles
Water structure
Hydrophobic Interactions
 Van der Waals interactions
 Non-interference with water structure
 Solubilities of compounds in aqueous
 vs organic solvents
Examples
How to denature biological macromolecules

IV. How the DNA double helix was discovered *(Section 6.2; p. 210)*
 chemistry background
 Chargaff’s rules
 X-ray fiber diffraction
 densities of A and B form DNA
 model building
The DNA Story (film)
The Dickerson dodecamer *(p. 210)*
Properties of nucleic acid double helices
 The Watson-Crick base pairs
 base stacking
 A vs B
 major, minor grooves
 base tilting
 helical parameters
 screw symmetry operators
 pitch
 twist
 rise
 tilt
 roll
 propeller twist
torsion angles

V. Properties of Nucleic Acids *(Section 6.4)*
 spectra *(Fig. 6-9)*
 melting and reannealing
 hybridization

VI. DNA Replication *(Chapter 11)*
DNA is the genetic material
Avery et al.
Hershey & Chase
The Meselson-Stahl experiment
Kornberg and DNA Pol I
in vitro synthesis of DNA
Cairns' pol A mutant
DNA Pol II and DNA Pol III
Okazaki
Okazaki fragments
RNA primers
The replisome
origin
leading strand
lagging strand
DNA pol III
DNA pol I
primase
dna B
rep
ssb
ligase
DNA topoisomerases (Chapter 9)
Type I
Type II
linking numbers
twist and writhe
mechanisms
Replication in eukaryotes
Reverse transcriptase
retroviruses
RT as a tool

VII. "Recombinant" DNA: cloning, mapping and sequencing DNA (Chapter 7)
DNA cloning - useful methods
restriction endonucleases
labelling with 32P
isolation of DNA fragments by gel electrophoresis
blots - Southern, northern
ligation - sticky ends vs blunt ends
transformation
cloning vectors
plasmids
phage
cosmids
YAC vectors
how to find your clone
polymerase chain reaction (PCR)
expression
overexpression
mapping genomes
sequencing
solid-state synthesis of DNA
DNA "chips"

VIII. Mutagenesis and DNA Repair (Chapter 12)
spontaneous mutations
chemical mutagenesis
uv damage
thymine dimers
repair
excision and repair replication
photolyase
O6-methyltransferase
uvr ABC
methylation tags the reference strand

IX. Recombination (Chapters 13 and 14)
homologous recombination
recA
strand invasion
branch migration
Holliday junctions
site-specific recombination
Chi hotspots
recBC

X. Transcription (Chapter 15)
RNA polymerases
bacterial
 subunit structure
eukaryotic
 RNA pol I
 RNA pol II
 RNA pol III

initiation
 promoters
 sigma factors
 open vs. closed complexes

elongation

termination
 rho-dependent
 rho-independent
 anti-termination

XI. RNA (Section 6.3)

RNA vs DNA
 why RNA? (why DNA?)

classes of RNA
 mRNA
 tRNA
 rRNA
 snRNAs
 micro-RNAs
 SRP RNA
telomerase
 RNase P RNA
etc...

Stereochemistry of RNA
 3’ endo sugar pucker (Fig. 6-18)
 A-form helices (Fig. 6-17)

RNA can have tertiary structure

XII. The Genetic Code (Chapter 17)

The triplet code: the early days
Colinearity of the genetic map and the protein chain
 Sarabhai & Brenner
 Yanofsky
How the code was cracked
the dictionary (Inside back cover)
 sense codons
 nonsense (stop) codons
 start codons
Wobble
Exceptions to universality
Origins of the code

XIII. Translation (Chapter 18)
tRNA (Figs. 17-2, 18-13)
 modified nucleotides
 the cloverleaf secondary structure
 tertiary structure
 tertiary base-base interactions
 pi turns
 stacking
 "stretched" phosphodiester linkages
 aminoacylation
 relative free energies of amino acids,
 proteins, and aminoacyl-tRNA
 how aminoacyl tRNA synthetases
 recognize tRNA
translation mechanisms
Initiation
 Initiation factors
 IF-1
 IF-2
 IF-3
 GTP hydrolysis
 initiator tRNA
 mRNA start-site selection
 mRNA structure
 the initiation cycle
Elongation
 factors
 EF-Tu is the most abundant protein
 in the E.coli cell
 Almost all the tRNA in the cell is
 bound to EF-Tu
 EF-G
Homology to EF-Tu
Position and orientation in the ribosome
GTP hydrolysis
translocation: major molecular movement
A unifying mechanism for EF-Tu and EF-G?
hybrid states
peptidyl transferase: is it RNA?

Termination
termination codons
release factors
Direct recognition of codons by protein?

ribosomes
ribosomal RNA
primary
secondary
tertiary
ribosomal proteins
crystal and NMR structures
assembly
in vivo
in vitro
Nomura's assembly map
structure
electron microscopy
low resolution
reconstructions
difference maps
tRNAs
factors
EF-G
EF-Tu
IF-3

X-ray crystallography
difference maps of tRNAs
Translation in the context of tRNA and ribosome structure
ribosomes have tRNA binding sites
ribosomes have a mRNA binding channel (1322)
peptidyl transferase is an integral part of the ribosome
the mechanism of translation is inherent to the ribosome itself

Nonsense mutations: amber, ochre and opal
 Nonsense suppressors
 tRNA
 ribosomal RNA

Frameshift mutations
 Frameshift suppressors
 tRNA
 ribosomal RNA
 Natural frameshifting

Translational accuracy
 Drug-induced misreading
 Ram mutations
 Restrictive mutations

Antibiotics and Translation
 Streptomycin
 Chloramphenicol
 Erythromycin
 Neomycin

Translation in terms of ribosome structure

XIV. Protein Structure *(Chapter 4)*
Amino Acids: the building blocks of proteins *(Inside back cover)*
 structures
 general
 stereochemistry
 peptide bonds
 side-chains
 properties
 ionic, hydrogen bonding, hydrophobic
 S-S bridges
 pK's
 spectra

Primary Structure: amino acid sequence and other
covalent structure
 length of protein chains
 sequence determination
 DNA sequencing
 direct protein methods
separation methods
 amino acids, peptides
 amino acid analysis
 proteins
 gel electrophoresis
 1-dimensional
 2-dimensional
 columns
 sizing
 ionic
 affinity
 reverse phase (HPLC)
biological methods
 antibodies
 natural complexes
 cloning and expression

Secondary Structure: Linus Pauling’s consecutive home runs
 definition of secondary structure
 the alpha helix
 geometry
 dipole moment
 amphipathic helices
 rules for prediction
 beta pleated sheets
 parallel
 anti-parallel
 curvature: saddles and barrels
 hydrophobic and hydrophilic faces
 turns
 beta turns
 type I
 type II
 rules for prediction
 irregular turns: "loops"

Tertiary Structure
 definition
 what determines tertiary folding?
 prediction theories
 Chou-Fasman prediction
 x-ray crystallography
unit cell vs. asymmetric unit
Fourier synthesis (and analysis)
reciprocal space
amplitudes vs intensities
phase determination
modeling and refinement
domains
definition
types
 alpha
 beta-barrel
 parallel
 antiparallel
 alpha/beta
 alpha-beta-alpha sandwiches
 alpha-beta "open-face" sandwiches
 small metalloproteins
 irregular
how many kinds of domains are there?
big proteins are assembled from multiple domains
 mix-and-match
Gilbert's theory of exon shuffling

Quaternary Structure
definition
examples

XV. Transcriptional Regulation (Chapters 19, 20)
Promoters and Operators
cis-acting vs trans-acting elements
Prokaryotic transcriptional regulation
 The lac operon
 lambda repressor
 mechanism of protein-DNA recognition
 co-crystal of repressor-DNA complex
 helix-turn-helix motif
Eukaryotic transcriptional regulation
 engrailed: recognition of a eukaryotic gene
 by a helix-turn-helix motif
 enhancer elements
remote from transcriptional start
work in either orientation
require trans-acting factors

Other examples
zinc fingers
leucine zippers
TATA binding protein
recognition by beta-sheets

XVI. Introns and RNA Processing (Chapter 16)
interruption of many eukaryotic genes by introns
sequence rules for intron borders
RNA splicing
the spliceosome
snRNAs
splicesomal proteins
mechanism of splicing
lariat formation
RNA rearrangements

XVII. Eukaryotic Genomes (Chapter 10)
Chromatin
histones
nucleosome structure
nucleosome cores
higher-order structure of chromatin
Telomeres
role of telomeres
structure
telomerase
Centromeres

XIX. The RNA World: How did life begin? (Section 16.6)
The chicken-egg paradox
Alternative scenarios
So what came before RNA?
Wächtershäuser
Orgel